
Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 1

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Statistical & Data Analysis
Using Neural Network

TechSource Systems Sdn. Bhd.

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Course Outline:
1. Neural Network Concepts

a) Introduction
b) Simple neuron model
c) MATLAB representation of neural network

2. Types of Neural Network
a) Perceptrons
b) Linear networks
c) Backpropagation networks
d) Self-organizing maps

3. Case Study: Predicting Time Series

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 2

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Neural Network Concepts

Section Outline:
1. Introduction

Definition of neural network
Biological perspective of neural network
Neural network applications

2. Simple neuron model
Components of simple neuron

3. MATLAB representation of neural network
Single neuron model
Neural network with single-layer of neurons
Neural network with multiple-layer of neurons

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Neural Network Concepts

Definition of Neural Network

“A neural network is an interconnected assembly of simple
processing elements, units or nodes, whose functionality is
loosely based on the animal neuron. The processing ability of
the network is stored in the inter-unit connection strengths, or
weights, obtained by a process of adaptation to, or learning
from, a set of training patterns.”

Inputs Outputs

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 3

www.techsource.com.my

©2005 Systems Sdn. Bhd.

The Biological Perspective of Neural Networks

Neural Network Concepts

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Neural Network Applications:

Aerospace
Automotive
Banking
Credit Card Activity
Checking
Defense
Electronics
Entertainment
Financial
Industrial

Insurance
Manufacturing
Medical
Oil & Gas
Robotics
Speech
Securities
Telecommunications
Transportation

Neural Network Concepts

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 4

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Neural Network Concepts

Components of Simple Neuron

•
•
•

p1

p2

p3

pR

w1
w2
w3

wR

a

Dendrites
Cell

Body Axon

Synapses

(Inputs) (Output)

1

b Bias

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Components of Simple Neuron

a = f(w1p1+ w2p2 + w3p3 + … + wRpR + b)

Σ ƒ•
•
•

Summation
Transfer
Functionw1

w2
w3

wR

b

1

p1

p2

p3

pR

a(Inputs) (Output)
n

Neural Network Concepts

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 5

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Neural Network Concepts

Σ n a
Inputs Output

p1

p2

w1

w2

1

If p1 = 2.5; p2 = 3; w1 = 0.5; w2 = -0.7; b = 0.3. Let’s assume the transfer
function of the neuron is hardlimit, where,

0 for n < 0
a = hardlim(n) =

1 for n ≥ 0

∴ a = hardlim(n) = hardlim(w1p1 + w2p2 + b)
= hardlim(0.5×2.5 + (-0.7)×3 + 0.3)
= hardlim(-0.55)
= 0

b

Example:

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Neural Network Concepts

MATLAB® Representation of
the Simple Neuron Model

W

b

ƒ

R

Input A Single-Neuron Layer Output

R × 1

p

1

1 × R

1 × 1

n
1 × 1

1

a
1 × 1

a = f(Wp + b)

p = p1

p2
•
•
•
pR R × 1

Input
Vector

Weight
Vector

W = [w1 w2 • • • wR] 1 × R

R = number of input elements

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 6

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Neural Network Concepts

Single Layer of Neurons

IW1,1

b1

f1

R

Input Layer 1 with S Neurons Output

R × 1

p

1

S1 × R

S1 × 1

n1

S1 × 1

S1

a1

S1 × 1

a1 = f1(IW1,1p + b1)

R = number of input elements

Where,

• S1: Number of neurons
in Layer 1

• IW1,1: Input Weight
matrix for connection
from Input to Layer 1

iw1,1
1,1 iw1,1

1,2 … iw1,1
1,R

iw1,1
2,1 iw1,1

2,2 … iw1,1
2,R

IW1,1 =

iw1,1
S,1 iw1,1

S,2 … iw1,1
S,R

...
...

...

S × R

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Neural Network Concepts

IW1,1

b1

f1
R × 1

p

1

n1

S1

LW2,1

b2

f2
LW3,2

b3

f3

1 1

Input Layer 1 Layer 2 Layer 3

S1 × R

S1 × 1

a1

S1 × 1
S1 × 1

S2 × 1
S2

n2

S2 × 1
S2 × S1

a2

S2 × 1 S3 × S2

S3 × 1

n3

S3 × 1

S3

a3 = y

Output

S3 × 1

a1 = f1(IW1,1p + b1) a2 = f2(LW2,1a1 + b2) a3 = f3(LW3,2a2 + b3)

∴ a3 = f3(LW3,2 f2(LW2,1 f1(IW1,1p + b1) + b2) + b3) = y

• S1, S2, S3: Number of neurons in Layer 1, Layer 2, Layer 3 respectively
• IW1,1: Input Weight matrix for connection from Input to Layer 1
• LW2,1: Layer Weight matrix for connection from Layer 1 to Layer 2
• LW3,2: Layer Weight matrix for connection from Layer 2 to Layer 3

Hidden Layers Output Layer

R

Multiple Layer of Neurons

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 7

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Neural Network Concepts

Example:

Σ

Σ

Σ

p1

p2

1

n1
1

n1
2

n2
1

a1
1

a1
2

a2
1

1

b1
1

b1
2

b2
1

iw1,1
1,1

iw1,1
1,2

iw1,1
2,1

iw1,1
2,2

lw2,1
1,1

lw2,1
1,2

1

Inputs

Hidden Layer Output Layer

Neural network with 2 layers. 1st layer (hidden layer) consists of 2 neurons
with tangent-sigmoid (tansig) transfer functions; 2nd layer (output layer)
consists of 1 neuron with linear (purelin) transfer function.

Output

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Neural Network Concepts

In MATLAB® abbreviated notation, the neural network is represented by the
diagram below.

IW1,1

b1

2

2 × 1
p

1

2 × 2

2 × 1

n1

2 × 1

2

a1

2 × 1 LW2,1

b2

n2

1 × 1

1

a2 = y
1 × 1

1 × 2

1
1 × 1

IW1,1 =
iw1,1

1,1 iw1,1
1,2

iw1,1
2,1 iw1,1

2,2

p =
p1

p2
b1 =

b1
1

b1
2

n1 =
n1

1

n1
2

a1 =
a1

1

a1
2

LW2,1 = lw2,1
1,1 lw2,1

1,2 b2 = b2
1

n2 = n2
1 a2 = a2

1 = y

∴ a2 = purelin(LW2,1 tansig(IW1,1p + b1) + b2) = y

tansig purelin

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 8

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Neural Network Concepts

tansig(n) = 2 / ((1 + e-2n) -1)

purelin(n) = n

IW1,1 =
0.3 -0.7

-0.2 0.5
p = 1

2
b1 =

0.1
0.2 LW2,1 = 0.1 -0.2 b2 = 0.3

∴ a2 = purelin(LW2,1 tansig(IW1,1p + b1) + b2) = y

For,

∴y = a2 = purelin(LW2,1 tansig(IW1,1p + b1) + b2)
= purelin([0.1 -0.2] × tansig([0.3 -0.7 ; -0.2 0.5] × [1 ; 2] + [0.1 ; 0.2]) + 0.3)
= purelin([0.1 -0.2] × tansig([-1 ; 1]) + 0.3)
= purelin(0.0715)
= 0.0715

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Neural Network Concepts

Section Summary:
1. Introduction

Definition of neural network
Biological perspective of neural network
Neural network applications

2. Simple neuron model
Components of simple neuron

3. MATLAB representation of neural network
Single neuron model
Neural network with single-layer of neurons
Neural network with multiple-layer of neurons

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 9

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Types of Neural Network

Section Outline:
1. Perceptrons

Introduction
The perceptron architecture
Training of perceptrons
Application examples

2. Linear Networks
Introduction
Architecture of linear networks
The Widrow-Hoff learning algorithm
Application examples

3. Backpropagation Networks
Introduction
Architecture of backprogation network
The backpropagation algorithm
Training algorithms
Pre- and post-processing
Application examples

4. Self-Organizing Maps
Introduction
Competitive learning
Self-organizing maps
Application examples

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Perceptrons

Invented in 1957 by Frank Rosenblatt at Cornell Aeronautical
Laboratory.

The perceptron consists of a single-layer of neurons whose
weights and biases could be trained to produce a correct
target vector when presented with corresponding input vector.

The output from a single perceptron neuron can only be in one
of the two states. If the weighted sum of its inputs exceeds a
certain threshold, the neuron will fire by outputting 1;
otherwise the neuron will output either 0 or -1, depending on
the transfer function used.

The perceptron can only solve linearly separable problems.

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 10

www.techsource.com.my

©2005 Systems Sdn. Bhd.

If a straight line can be drawn to separate the input vectors
into two categories, the input vectors are linearly separable, as
illustrated in the diagram below. If need to identify four
categories, we need to use two perceptron neurons.

Linearly Separable Problems

p1

p2

(a) Two categories of
input vectors

(b) Four categories of
input vectors

p1

p2

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

The Perceptron Neuron

Σ•
•
•

Summation Hardlimitw1
w2
w3

wR

b

1

p1

p2

p3

pR

a

a = hardlim(w1p1+ w2p2 + w3p3 + … + wRpR + b)

Inputs Outputn

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 11

www.techsource.com.my

©2005 Systems Sdn. Bhd.

MATLAB® Representation of
the Perceptron Neuron

W

b

R

Input A Single-Neuron Layer Output

R × 1

p

1

1 × R

1 × 1

n
1 × 1

1

a
1 × 1

a = hardlim(Wp + b)

a

0

+1

n

-1

Transfer Function

0 for n < 0
a = hardlim(n) =

1 for n ≥ 0

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

The Perceptron Architecture

Σ

Σ

p1

p2

1

n1
1

n1
2

a1
1

a1
2

b1
1

b1
2

iw1,1
1,1

1

Σ n1
S1 a1

S1

b1
S1

1

iw1,1
S1,R

•
•
•

pR

•
•
•

•
•
•

Input The Perceptron Layer Output

IW1,1

b1

R

Single Layer of S Neurons Output

R × 1

p

1

S1 × R

S1 × 1

n1

S1 × 1

S1

a1

S1 × 1

a1 = hardlim(IW1,1p + b1)

Input

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 12

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Creating a Perceptron:
Command-Line Approach

The example below illustrates how to create a two-input, single-ouput
perceptron. The input values range from -2 to 2.

% Creating a perceptron
>> net = newp([-2 2; -2 2], 1);

% Checking properties and values of Input Weights
>> net.inputWeights{1,1} % properties
>> net.IW{1,1} % values

Σ

[-2:2] p1

[-2:2] p2

w1

w2

n

b
1

a
IW1,1

b1

2

2 × 1

p

1

1 × 2

1 × 1

n1

1 × 1

1

a1

1 × 1

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Types of Neural Network

% Checking properties and values of bias
>> net.biases{1} % properties
>> net.b{1} % values

% Note that initial weights and biases are initialized to zeros using “initzero”
>> net.inputWeights{1,1}.initFcn
>> net.biases{1}.initFcn

% To compute the output of perceptron from input vectors [p1; p2], use the
“sim” command
>> p = [[2; 2] [1; -2] [-2; 2] [-1; 1]]
>> a = sim(net, p)
>> a =

1 1 1 1

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 13

www.techsource.com.my

©2005 Systems Sdn. Bhd.

The Perceptron Learning Rule

Perceptrons are trained on examples of desired behavior, which
can be summarized by a set of input-output pairs

{p1, t1}, {p2, t2},…, {pQ, tQ}

The objective of training is to reduce the error e, which is the
difference t – a between the perceptron output a, and the target
vector t.

This is done by adjusting the weights (W) and biases (b) of the
perceptron network according to following equations

Wnew = Wold + ∆W = Wold + epT

bnew = bold + ∆b = bold + e

Where e = t – a

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Training of Perceptron

If the Perceptron Learning Rule is used repeatedly to adjust the
weights and biases according to the error e, the perceptron wil
eventually find weight and bias values that solve the problem,
given that the perceptron can solve it.

Each traverse through all the training vectors is called an epoch.

The process that carries out such a loop of calculation is called
training.

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 14

www.techsource.com.my

©2005 Systems Sdn. Bhd.

10

We can train a Perceptron network to classify two groups of data, as
illustrated below

x1

x2

p1
p2

p3

p4

p5

p6

p7

p8

Group 0

Group 1

0.7
-2.5

2
-3.5

3
0.7
-1.2
-0.5
x2

11p8

00p7

10p6

0-1p5

1-1p4

1-1.5p3

0-2p2

0-3p1

Groupx1Data

Example:

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

11

Procedures:
% Load the data points into Workspace
>> load data

% Assign training inputs and targets
>> p = points; % inputs
>> t = group; % targets

% Construct a two-input, single-output perceptron
>> net = newp(minmax(p), 1);

% Train the perceptron network with training inputs (p) and targets (t)
>> net = train(net, p, t)

% Simulate the perceptron network with same inputs again
>> a = sim(net, p)
>> a =

0 0 1 1 0 1 0 1 % correct classification
>> t =

0 0 1 1 0 1 0 1

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 15

www.techsource.com.my

©2005 Systems Sdn. Bhd.

12

% Let’s be more adventurous by querying the perceptron with inputs it
never seen before

>> t1 = [-2; -3];
>> t2 = [0.5; 4];
>> a_t1 = sim(net, t1)
>> a_t1 =

0
>> a_t2 = sim(net, t2)
>> a_t2 =

1

x1

x2

p1

p2

p3

p4

p5

p6

p7

p8

Group 0

Group 1

t1

t2

∴ The perceptron classifies t1 and t2 correctly.

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Using “nntool” GUI
The “nntool” GUI can be used to create and train different types of neural
network available under MATLAB® Neural Network Toolbox

The GUI can be invoked by typing at the command window,
>> nntool

13
Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 16

www.techsource.com.my

©2005 Systems Sdn. Bhd.

14

Create a new perceptron network by clicking “New Network…”, a new
window appears where network architecture can be defined. Click “Create”
to create the network.

First, define the training inputs by clicking “Import…”, select group from
the list of variables. Assign a name to the inputs and indicate that this
variable should be imported as inputs.

Define the targets similarly.

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

15

Next, select the “Train…” tab and set Inputs to p and Targets to t. Click on
“Train Network” to start the training.

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 17

www.techsource.com.my

©2005 Systems Sdn. Bhd.

The network completed training in 4 epochs, which is 4 complete passes
through all training inputs.

Now, we can test the performance of the trained network by clicking
“Simulate...”. Set the Inputs to p.

16
Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Exercise 1: Modeling Logical AND Function
The Boolean AND function has the following truth table:

111
001
010
000

X AND YYX

The problem is linearly-separable, try to build a one-
neuron perceptron network with following inputs and
output:

111
001
010
000
ap2p1

1

p1

00

0

17

p2

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 18

www.techsource.com.my

©2005 Systems Sdn. Bhd.

18

Solution:
Command-line approach is demonstrated herein. The “nntool” GUI can be used alternatively.

% Define at the MATLAB® command window, the training inputs and targets
>> p = [0 0 1 1; 0 1 0 1]; % training inputs, p = [p1; p2]
>> t = [0 0 0 1]; % targets

% Create the perceptron
>> net = newp([0 1; 0 1], 1);

% Train the perceptron with p and t
>> net = train(net, p, t);

% To test the performance, simulate the perceptron with p
>> a = sim(net, p)
>> a =

0 0 0 1
>> t =

0 0 0 1

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

19

Exercise 2: Pattern Classification
Build a perceptron that can differentiate between two group of images:

Hint:

Use Boolean values 1’s and 0’s to
represent the image.

Example for image_1 is shown.

∴ image_1 = [0 1 0
1 0 1
1 0 1
0 1 0]’;

Load the training vectors into
workspace:

>> load train_images

Group 0 Group 1

img2

0

img1

1 0
1 0 1
1 0 1
0 1 0

img3 img4

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 19

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Try testing the trained perceptron on following images:

timg1 timg2 timg3

>> load test_images

20
Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Solution:
Command-line approach is demonstrated herein. Tne “nntool” GUI can be used alternatively.

% Define at the MATLAB® command window, the training inputs and targets
>> load train_images
>> p = [img1 img2 img3 img4];
>> t = targets;

% Create the perceptron
>> net = newp(minmax(p), 1);

% Training the perceptron
>> net = train(net, p, t);

% Testing the performance of the trained perceptron
>> a = sim(net, p)

% Load the test images and ask the perceptron to classify it
>> load test_images
>> test1 = sim(net, timg1) % to do similarly for other test images

21
Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 20

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Linear Networks

Linear networks are similar to perceptron, but their transfer
function is linear rather than hard-limiting.

Therefore, the output of a linear neuron is not limited to 0 or 1.

Similar to perceptron, linear network can only solve linearly
separable problems.

Common applications of linear networks are linear
classification and adaptive filtering.

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

The Linear Neuron

Σ•
•
•

Summation Linearw1
w2
w3

wR

b

1

p1

p2

p3

pR

a

a = purelin(w1p1+ w2p2 + w3p3 + … + wRpR + b)

Inputs Outputn

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 21

www.techsource.com.my

©2005 Systems Sdn. Bhd.

MATLAB® Representation of
the Linear Neuron

a

0

+1

n

-1

Transfer Function

a = purelin(n) = n

W

b

R

Input A Single-Neuron Layer Output

R × 1

p

1

1 × R

1 × 1

n
1 × 1

1

a
1 × 1

a = purelin(Wp + b)

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Architecture of Linear Networks

IW1,1

b1

R

Output

R × 1

p

1

S1 × R

S1 × 1

n1

S1 × 1

S1

a1

S1 × 1

a1 = purelin(IW1,1p + b1)

Input Layer of S1 Linear NeuronsΣ

Σ

p1

p2

1

n1
1

n1
2

a1
1

a1
2

b1
1

b1
2

iw1,1
1,1

1

Σ n1
S1 a1

S1

b1
S1

1

iw1,1
S1,R

•
•
•

pR

•
•
•

•
•
•

Input Layer of Linear Neurons Output

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 22

www.techsource.com.my

©2005 Systems Sdn. Bhd.

5

Creating a Linear Network:
Command-Line Approach

The example below illustrates how to create a two-input, single-ouput linear
network via command-line approach. The input values range from -2 to 2.

% Creating a linear network
>> net = newlin([-2 2; -2 2], 1);

% Checking properties and values of Input Weights
>> net.inputWeights{1,1} % properties
>> net.IW{1,1} % values

Σ

[-2:2] p1

[-2:2] p2

w1

w2

n

b
1

a
IW1,1

b1

2

2 × 1

p

1

1 × 2

1 × 1

n1

1 × 1

1

a1

1 × 1

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

6

% Checking properties and values of bias
>> net.biases{1} % properties
>> net.b{1} % values

% Note that initial weights and biases are initialized to zeros using “initzero”
>> net.inputWeights{1,1}.initFcn
>> net.biases{1}.initFcn

% To compute the output of linear network from input vectors [p1; p2], use
the “sim” command
>> p = [[2; 2] [1; -2] [-2; 2] [-1; 1]]
>> a = sim(net, p)
>> a =

0 0 0 0

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 23

www.techsource.com.my

©2005 Systems Sdn. Bhd.

The Widrow-Hoff Learning Algorithm

Similar to perceptron, the Least Mean Square (LMS) algorithm,
alternatively known as the Widrow-Hoff algorithm, is an example
of supervised training based on a set of training examples.

{p1, t1}, {p2, t2}, …, {pQ, tQ}

The LMS algorithm adjusts the weights and biases of the linear
networks to minimize the mean square error (MSE)

The LMS algorithm adjusts the weights and biases according to
following equations

W(k + 1) = W(k) + 2αe(k)pT(k)

b(k + 1) = b(k) + 2αe(k)

() () ()()22

1 1

1 1Q Q

k k
MSE e k t k a k

Q Q= =

= = −∑ ∑

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Linear Classification (train)

Linear networks can be trained to perform linear classification
with the function train.

The train function applies each vector of a set of input vectors
and calculates the network weight and bias increments due to
each of the inputs according to the LMS (Widrow-Hoff)
algorithm.

The network is then adjusted with the sum of all these
corrections.

A pass through all input vectors is called an epoch.

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 24

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Example:
Let’s re-visit Exercise 2: Pattern Classification of the Perceptrons.
We can build a Linear Network to perform not only pattern classification but
also association tasks.

Group
0

Group
1

img2

0

img1

1 0
1 0 1
1 0 1
0 1 0

img3

img4

Training Images Testing Images

timg1 timg2

timg3

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Solution:
Command-line approach is demonstrated herein. Tne “nntool” GUI can be used alternatively.

% Define at the MATLAB® command window, the training inputs and targets
>> load train_images
>> p = [img1 img2 img3 img4];
>> t = targets;

% Create the linear network
>> net = newlin(minmax(p), 1);

% Train the linear network
>> net.trainParam.goal = 10e-5; % training stops if goal achieved
>> net.trainParam.epochs = 500; % training stops if epochs reached
>> net = train(net, p, t);

% Testing the performance of the trained linear network
>> a = sim(net, p)
>> a =

-0.0136 0.9959 0.0137 1.0030

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 25

www.techsource.com.my

©2005 Systems Sdn. Bhd.

% Comparing actual network output, a, with training targets, t:
>> a =

-0.0136 0.9959 0.0137 1.0030
>> t =

0 1 0 1

∴ The actual network output, a, closely resembles that of target, t. It is
because the output from Linear Network is not straightly 0 or 1, the
output can be a range of values.

% Now, test the Linear Network with 3 images not seen previously
>> load test_images
>> test1 = sim(net, timg1)
>> test1 =

0.2271
>> test2 = sim(net, timg2)
>> test2 =

0.9686
>> test3 = sim(net, timg3)

test3 =
0.8331

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

How should we interpret the network outputs test1, test2 and test3? For that we
need to define a Similarity Measure, S

S t test= −

Where t is the target-group (i.e. 0 or 1) and test is the network output when
presented with test images.

0.16690.8331timg3

0.03140.9686timg2

0.77290.2271timg1

wrt. Group 1wrt. Group 0test image

Similarity Measure, S

The smaller the S is, the more similar is a test image to a particular group.

∴ timg1 belongs to Group 0 while
timg2 and timg3 belong to Group 1.

These results are similar to what we
obtained previously using
Perceptron. By using Linear
Network we have the added
advantage of knowing how similar
is it a test image is to the target
group it belonged.

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 26

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Exercise 1: Simple Character Recognition
Create a Linear Network that will differentiate between a Letter ‘U’ and Letter
‘T’. The Letter ‘U’ and ‘T’ are represented by a 3×3 matrices:

T = [1 1 1
0 1 0
0 1 0]’

U = [1 0 1
1 0 1
1 1 1]’

Test the trained Linear Network with following test images:

U_odd = [1 1 1
1 0 1
1 1 1]’

T_odd = [1 1 1
0 1 0
0 1 1]’

>> load test_letters

>> load train_letters

Group 0 Group 1

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

14

Solution:
Command-line approach is demonstrated herein. Tne “nntool” GUI can be used alternatively.

% Define at the MATLAB® command window, the training inputs and targets
>> load train_letters
>> p = [T U];
>> t = targets;

% Create the linear network
>> net = newlin(minmax(p), 1);

% Train the linear network
>> net.trainParam.goal = 10e-5; % training stops if goal achieved
>> net.trainParam.epochs = 500; % training stops if epochs reached
>> net = train(net, p, t);

% Testing the performance of the trained linear network
>> a = sim(net, p)
>> a =

0.0262 0.9796

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 27

www.techsource.com.my

©2005 Systems Sdn. Bhd.

15

% Comparing actual network output, a, with training targets, t:
>> a =

0.0262 0.9796
>> t =

0 1

% Now, test the Linear Network with odd-shapes of T and U
>> load test_letters
>> test1 = sim(net, T_odd)
>> test1 =

0.2066 % more similar to T
>> test2 = sim(net, U_odd)
>> test2 =

0.8637 % more similar to U

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

1

Backpropagation (BP) Networks

Backpropagation network was created by generalizing the
Widrow-Hoff learning rule to multiple-layer networks and non-
linear differentiable transfer functions (TFs).

Backpropagation network with biases, a sigmoid TF layer, and a
linear TF output layer is capable of approximating any function.

Weights and biases are updated using a variety of gradient
descent algorithms. The gradient is determined by propagating
the computation backwards from output layer to first hidden
layer.

If properly trained, the backpropagation network is able to
generalize to produce reasonable outputs on inputs it has never
“seen”, as long as the new inputs are similar to the training
inputs.

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 28

www.techsource.com.my

©2005 Systems Sdn. Bhd.

2

Architecture of Feedforward BP Network

Σ

Σ

Σ

p1

p2

n1
1

a2
1

1
b1

1

iw1,1
1,1

iw1,1
2,1

iw1,1
S1,R

lw2,1
1,1

Inputs Outputs

pR Σ

Σ•••
•••

b1
2

b1
S1

1

1

1

1

b2
1

b2
2

n1
2

n1
S1

n2
1

n2
2 a2

2

lw2,1
2,1

lw2,1
2,S1

Hidden Layer Output Layer

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

3

MATLAB® Representation of
the Feedforward BP Network

IW1,1

b1

R

R × 1
p

1

S1 × R

S1 × 1

n1

S1 × 1

S1

a1

S1 × 1 LW2,1

b2

n2

2 × 1

2

a2 = y
2 × 1

2 × S1

1
2 × 1

∴ a2 = purelin(LW2,1 tansig(IW1,1p + b1) + b2) = y

tansig purelin

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 29

www.techsource.com.my

©2005 Systems Sdn. Bhd.

4

Transfer Functions for BP Networks
a

0

+1

n

-1

a

0

+1

n

-1

a

0

+1

-1

n

Log-Sigmoid

Tangent-Sigmoid

Linear

logsig(n) = 1 / (1 + exp(-n))

tansig(n) = 2/(1+exp(-2*n))-1
purelin(n) = n

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

The Backpropagation Algorithm

The backpropagation algorithm is used to update the weights
and biases of the neural networks. Full details of the algorithm
is given in Appendix 1.

The weights are updated according to following formulae:

5

, ,
,

j i j j i
j i

Ew x
w

α αδ∂
∆ = − = −

∂
, , ,j i j i j iw w w← + ∆

() ()1k k k k ka a t aδ = − − −

() ,
()

1h h h k k h
k Downstream h

a a wδ δ
∈

= − ∑

where,

For output neuron k,

For hidden neuron h, Please see
Appendix 1 for
full derivation of
the algorithm

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 30

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Training of Backpropagation Networks

6

There are generally four steps in the training process:

1. Assemble the training data;
2. Create the network object;
3. Train the network;
4. Simulate the network response to new inputs.

The MATLAB® Neural Network Toolbox implements some of
the most popular training algorithms, which encompass both
original gradient-descent and faster training methods.

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Batch Gradient Descent Training

7

Batch Training: the weights and biases of the network are
updated only after the entire training data has been applied to
the network.

Batch Gradient Descent (traingd):

• Original but the slowest;

• Weights and biases updated in the direction of the
negative gradient (note: backprop. algorithm);

• Selected by setting trainFcn to traingd:

net = newff(minmax(p), [3 1], {‘tansig’, ‘purelin’}, ‘traingd’);

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 31

www.techsource.com.my

©2005 Systems Sdn. Bhd.

8

Batch Gradient Descent with Momentum

Batch Gradient Descent with Momentum (traingdm):

• Faster convergence than traingd;

• Momentum allows the network to respond not only the
local gradient, but also to recent trends in the error
surface;

• Momentum allows the network to ignore small features in
the error surface; without momentum a network may get
stuck in a shallow local minimum.

• Selected by setting trainFcn to traingdm:

net = newff(minmax(p), [3 1], {‘tansig’, ‘purelin’}, ‘traingdm’);

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Faster Training

The MATLAB® Neural Network Toolbox also implements some
of the faster training methods, in which the training can
converge from ten to one hundred times faster than traingd
and traingdm.

These faster algorithms fall into two categories:

1. Heuristic techniques: developed from the analysis of the
performance of the standard gradient descent algorithm,
e.g. traingda, traingdx and trainrp.

2. Numerical optimization techniques: make use of the
standard optimization techniques, e.g. conjugate
gradient (traincgf, traincgb, traincgp, trainscg), quasi-
Newton (trainbfg, trainoss), and Levenberg-Marquardt
(trainlm).

9
Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 32

www.techsource.com.my

©2005 Systems Sdn. Bhd.

10

Comparison of Training Algorithms

GD with adaptive α and with
momentumtraingdx

One Step Secant algorithmtrainoss
Quasi-Newton Algorithms with
fast convergence

BFGS algorithmtrainbfg

Improve generalization capability

Fastest training. Memory
reduction features

Conjugate Gradient Algorithms
with fast convergence

Fast convergence

Faster than traingd, but can use
for batch mode only.

Faster than traingd
Original but slowest

Comments

Levenberg-Marquardt trainlm

Bayesian regularizationtrainbr

Scaled Conjugate Gradienttrainscg
Powell-Beale Restartstraincgb

Polak-Ribiére Updatetraincgp

Fletcher-Reeves Updatetraincgf
Resilient Backpropagationtrainrp

GD with adaptive αtraingda
GD with momentumtraingdm
Gradient Descent (GD)traingd

Training Algorithms

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

11

Pre- and Post-Processing Features

Linear regression between network outputs and targets. Use to
determine adequacy of network fit.postreg

Description

Preprocess new inputs to networks that were trained with data
transformed with prepca.trapca

Principal component analysis. Reduces dimension of input vectorprepca

Preprocess new inputs to networks that were trained with data
normalized with prestd.trastd

Inverse of prestd. Convert data back into original range of values.poststd

Normalize data to have zero mean and unity standard deviationprestd

Preprocess new inputs to networks that were trained with data
normalized with premnmx.tramnmx

Inverse of premnmx. Convert data back into original range of values.postmnmx
Normalize data to fall into range [-1 1].premnmx

Function

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 33

www.techsource.com.my

©2005 Systems Sdn. Bhd.

12

Example: Modeling Logical XOR Function
The XOR Problem is highly non-linear, thereby cannot be solved using
Perceptrons or Linear Networks. In this example, we will construct a simple
backpropagation network to solve this problem.

011
101
110
000

X XOR YYX

0

1

1

0

X

Y

111
001
010
000
ap2p1

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Solution:
Command-line approach is demonstrated herein. Tne “nntool” GUI can be used alternatively.

% Define at the MATLAB® command window, the training inputs and targets
>> p = [0 0 1 1; 0 1 0 1];
>> t = [0 0 0 1];

% Create the backpropagation network
>> net = newff(minmax(p), [4 1], {‘logsig’, ‘logsig’}, ‘traingdx’);

% Train the backpropagation network
>> net.trainParam.epochs = 500; % training stops if epochs reached
>> net.trainParam.show = 1; % plot the performance function at every epoch
>> net = train(net, p, t);

% Testing the performance of the trained backpropagation network
>> a = sim(net, p)
>> a =

0.0002 0.0011 0.0001 0.9985
>> t =

0 0 0 1

13
Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 34

www.techsource.com.my

©2005 Systems Sdn. Bhd.

14

Improving Generalization with Early Stopping

The generalization capability can be improved with the early
stopping feature available with the Neural Network toolbox.

In this technique the available data is divided into three
subsets:

1. Training set
2. Validation set
3. Testing set

The early stopping feature can be invoked when using the
train command:

[net, tr] = train(net, p, t, [], [], VV, TV)

VV: Validation set structure; TV: Test set structure.

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

15

Example: Function Approximation with Early Stopping

% Define at the MATLAB® command window, the training inputs and targets
>> p = [-1: 0.05: 1];
>> t = sin(2*pi*p) + 0.1*randn(size(p));

% Construct Validation set
>> val.P = [-0.975: 0.05: 0.975]; % validation set must be in structure form
>> val.T = sin(2*pi*val.P) + 0.1*randn(size(val.P));

% Construct Test set (optional)
>> test.P = [-1.025: 0.05: 1.025]; % validation set must be in structure form
>> test.T = sin(2*pi*test.P) + 0.1*randn(size(test.P));

% Plot and compare three data sets
>> plot(p, t), hold on, plot(val.P, val.T,‘r:*’), hold on, plot(test.P, test.T, ‘k:^’);
>> legend(‘train’, ‘validate’, ‘test’);

% Create a 1-20-1 backpropagation network with ‘trainlm’ algorithm
>> net = newff(minmax(p), [20 1], {‘tansig’, ‘purelin’}, ‘trainlm’);

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 35

www.techsource.com.my

©2005 Systems Sdn. Bhd.

16

>> net.trainParam.show = 1;
>> net.trainParam.epochs = 300;

% First, train the network without early stopping
>> net = init(net); % initialize the network
>> [net, tr] = train(net, p, t);
>> net1 = net; % network without early stopping

% Then, train the network with early stopping with both Validation & Test sets
>> net = init(net);
>> [net, tr] = train(net, p, t, [], [], val, test);
>> net2 = net; % network with early stopping

% Test the modeling performance of net1 & net2 on Test sets
>> a1 = sim(net1, test.P); % simulate the response of net1
>> a2 = sim(net2, test.P); % simulate the response of net2
>> figure, plot(test.P, test.T), xlim([-1.03 1.03]), hold on
>> plot(test.P, a1, ‘r’), hold on, plot(test.P, a2, ‘k’);
>> legend(‘Target’, ‘Without Early Stopping’, ‘With Early Stopping’);

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

17

∴Network with early stopping can better fit the Test data set with
less discrepancies, therefore the early stopping feature can be
used to prevent overfitting of network towards the training data.

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 36

www.techsource.com.my

©2005 Systems Sdn. Bhd.

18

Exercise 1: Time-Series Prediction
Create a Neural Network that can predict the next-day 24-hour time-series
based on current-day 24-hour time-series.

dd-1 d+1 d+2

current day next day

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

19

The Neural Network structure is as follow:

Backprop.

Network

data(d, t=1)
data(d, t=2)
data(d, t=3)
data(d, t=4)

data(d, t=21)
data(d, t=22)
data(d, t=23)
data(d, t=24)

Inputs

(Current
Day)

data(d+1, t=1)
data(d+1, t=2)
data(d+1, t=3)
data(d+1, t=4)

data(d+1, t=21)
data(d+1, t=22)
data(d+1, t=23)
data(d+1, t=24)

Output

(Next
Day)

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 37

www.techsource.com.my

©2005 Systems Sdn. Bhd.

20

Data details:

Load timeseries.mat into MATLAB® workspace.

Training Data (1st to 37th days): TrainIp (inputs), TrainTgt (targets)

Testing Data (38th to 40th days): TestIp (query inputs), TestTgt (actual values)

Network details:

Architecture: 24-48-24 network, with tansig TF and purelin TF in hidden and
output layer respectively.

Training: trainlm algorithm with 7 epochs and plot the performance function
every 1 epoch.

Hint: use pre- and post-processing functions premnmx, tramnmx, postmnmx to
have more efficient training.

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

21

Solution:
% Load the Time Series data into MATLAB® Workspace
>> load timeseries

% Prepare the data for the network training
>> [PN, minp, maxp, TN, mint, maxt] = premnmx(TrainIp, TrainTgt);

% Create the backpropagation network
>> net = newff(minmax(PN), [48 24], {‘tansig’, ‘purelin’}, ‘trainlm’);
>> net.trainParam.epochs = 7;
>> net.trainParam.show = 1;

% Training the neural network
>> [net, tr] = train(net, PN, TN);

% Prepare the data for testing the network (predicting 38th to 40th days)
>> PN_Test = tramnmx(TestIp,minp,maxp);

% Testing the neural network
>> TN_Test = sim(net, PN_Test);

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 38

www.techsource.com.my

©2005 Systems Sdn. Bhd.

22

% Convert the testing output into prediction values for comparison purpose
>> [queryInputs predictOutputs] = postmnmx(PN_Test, minp, maxp, …
TN_Test, mint, maxt);

% Plot and compare the predicted and actual time series
>> predictedData = reshape(predictOutputs, 1, 72);
>> actualData = reshape(TestTgt, 1, 72);
>> plot(actualData, ‘-*’), hold on
>> plot(predictOutputs, ‘r:’);

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

23

Homework: Try to subdivide the training data [TrainIp TrainTgt] into Training
& Validation Sets to accertain whether the use of early stopping would
improve the prediction accuracy.

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 39

www.techsource.com.my

©2005 Systems Sdn. Bhd.

24

Exercise 2: Character Recognition

Create a Neural Network that can recognize 26 letters
of the alphabet. An imaging system that digitizes
each letter centered in the system field of vision is
available. The result is each letter represented as a 7
by 5 grid of boolean values. For example, here are the
Letters A, G and W:

A G
W P

Q Z

A

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

For each alphabetical letter, create a 35-by-1 input vector containing
boolean values of 1’s and 0’s. Example for Letter A:

0 0 1 0 0

0 1 0 1 0

0 1 0 1 0
1 0 0 0 1

1 1 1 1 1
1 0 0 0 1

1 0 0 0 1

Letter A = [0 0 1 0 0 …
0 1 0 1 0 …
0 1 0 1 0 …
1 0 0 0 1 …
1 1 1 1 1 …
1 0 0 0 1 …
1 0 0 0 1]’;

Corresponding Output is a 26-by-1 vector, indicating a 1 (i.e. TRUE) at
the correct alphabetical sequence. Example for Target A:

Target A = [1 0 0 0 0 …
0 0 0 0 0 …
0 0 0 0 0 …
0 0 0 0 0 …
0 0 0 0 0 …
0]’;

25
Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 40

www.techsource.com.my

©2005 Systems Sdn. Bhd.

The Neural Network structure is as follow:

Neural

Network

0
0
1
0

0
0
0
1

1
1
1
1

1
1
1
0

1
1
1
0

0
1
1
1

1
0
0

0
0

0
1
0

0
0

0
0

0
0
1

A B C

Inputs

(Alphabets)

Outputs

(Targets)

26
Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Data details:

Load training inputs and targets into workspace by typing

[alphabets, targets] = prprob;

Network details:

Architecture: 35-10-26 network, with logsig TFs in hidden and output layers.

Training: traingdx algorithm with 500 epochs and plot the performance
function every 1 epoch. Performance goal is 0.001.

27
Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 41

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Solution:
% Load the training data into MATLAB® Workspace
>> [alphabets, targets] = prprob;

% Create the backpropagation network
>> net = newff(minmax(alphabets), [10 26], {‘logsig’, ‘logsig’}, ‘traingdx’);
>> net.trainParam.epochs = 500;
>> net.trainParam.show = 1;
>> net.trainParam.goal = 0.001;

% Training the neural network
>> [net, tr] = train(net, alphabets, targets);

% First, we create a normal ‘J’ to test the network performance
>> J = alphabets(:,10);
>> figure, plotchar(J);
>> output = sim(net, J);
>> output = compet(output) % change the largest values to 1, the rest 0s
>> answer = find(compet(output) == 1); % find the index (out of 26) of network
output
>> figure, plotchar(alphabets(:, answer));

28
Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

29

% Next, we create a noisy ‘J’ to test the network can still identify it correctly…
>> noisyJ = alphabets(:,10)+randn(35,1)*0.2;
>> figure; plotchar(noisyJ);
>> output2 = sim(network1, noisyJ);
>> output2 = compet(output2);
>> answer2 = find(compet(output2) == 1);
>> figure; plotchar(alphabets(:,answer2));

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 42

www.techsource.com.my

©2005 Systems Sdn. Bhd.

1

Self-Organizing Maps

Self-organizing in networks is one of the most fascinating
topics in the neural network field. Such networks can learn to
detect regularities and correlations in their input and adapt their
future responses to that input accordingly.

The neurons of competitive networks learn to recognize groups
of similar input vectors. Self-organizing maps learn to recognize
groups of similar input vectors in such a way that neurons
physically near each other in the neuron layer respond to
similar input vectors.

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

2

Competitive Learning

IW1,1

b1

C

R

Output

R × 1

p

1

S1 × R

S1 × 1

n1

S1 × 1

S1

a1

S1 × 1

Input Competitive Layer

|| ndist || S1 × 1

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 43

www.techsource.com.my

©2005 Systems Sdn. Bhd.

3

Learning Algorithms for Competitive Network

The weights of the winning neuron (represented by a row of the
input weight matrix) are adjusted with the Kohonen learning rule
(learnk).

Supposed that the ith neuron wins, the elements of the ith row of
the input weight matrix are adjusted according to following
formula:

iIW1,1(q) = iIW1,1(q-1) + α(p(q) – iIW1,1(q-1))

One of the limitations of the competitive networks is that some
neurons may never wins because their weights are far from any
input vectors.

The bias learning rule (learncon) is used to allow every neuron in
the network learning from the input vectors.

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

4

Example: Classification using Competitive Network

p(1)

p(2)

We can use a competitive network to
classify input vectors without any
learning targets.

Let’s say if we create four two-element
input vectors, with two very close to (0
0) and others close to (1 1).

p = [0.1 0.8 0.1 0.9

0.2 0.9 0.1 0.8];

Let’s see whether the competitive
network is able to identify the
classification structure…

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 44

www.techsource.com.my

©2005 Systems Sdn. Bhd.

5

% Define at the MATLAB® command window, the four two-element vectors
>> p = [0.1 0.8 0.1 0.9; 0.2 0.9 0.1 0.8];

% Create a two-neuron competitive network
>> net = newc([0 1; 0 1], 2);

% The weights are initialized to the center of input ranges with ‘midpoint’ fcn
>>net.IW{1,1}
ans =

0.5 0.5
0.5 0.5

% The biases are computed by ‘initcon’ fcn, which gives
>> net.b{1}
ans =

5.4366
5.4366

% Let’s train the competitive network for 500 epochs
>> net.trainParam.epochs = 500;
>> net = train(net, p);

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

6

% Simulate the network with input vectors again
>> a = sim(net, p)
>> ac = vec2ind(a)
>> ac =

2 1 2 1

∴The network is able to classfy the input vectors into two classess, those
who close to (1,1), class 1 and those close to origin (0,0), class 2. If we look
at the adjusted weights,

>> net.IW{1,1}
ans =

0.8500 0.8500
0.1000 0.1501

∴Note that the first-row weight vector (associated with 1st neuron) is near to
input vectors close to (1,1), which the second-row weight vector (associated
with 2nd neuron) is near to input vectors close to (0,0).

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 45

www.techsource.com.my

©2005 Systems Sdn. Bhd.

7

Exercise 1: Classification of Input Vectors:
Graphical Example

First, generate the input vectors by using the built-in nngenc function:

>> X = [0 1; 0 1]; % Cluster centers to be in these bounds
>> clusters = 8; % Number of clusters
>> points = 10; % Number of points in each cluster
>> std_dev = 0.05; % Standard deviation of each cluster
>> P = nngenc(X,clusters,points,std_dev); % Number of clusters

Plot and show the generated clusters

>> plot(P(1,:),P(2,:),'+r');
>> title('Input Vectors');
>> xlabel('p(1)');
>> ylabel('p(2)');

Try to build a competitive network with 8 neurons and train for 1000
epochs. Superimpose the trained network weights onto the same figure.
Try to experiement with the number of neurons and conclude on the
accuracy of the classification.

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

8

Solution:
% Create and train the competitive network
>> net = newc([0 1; 0 1], 8, 0.1); % Learning rate is set to 0.1
>> net.trainParam.epochs = 1000;
>> net = train(net, P);

% Plot and compare the input vectors and cluster centres determined by the
competitive network
>> w = net.IW{1,1};
>> figure, plot(P(1,:),P(2,:),‘+r’);
>> hold on, plot(w(:,1), w(:,2), ‘ob’);

% Simulate the trained network to new inputs
>> t1 = [0.1; 0.1], t2 = [0.35; 0.4], t3 = [0.8; 0.2];
>> a1 = sim(net, [t1 t2 t3]);
>> ac1 = vec2ind(a1);
ac1 =

1 5 6

Homework: Try altering the number of neurons in the competitive layer and
observe how it affects the cluster centres.

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 46

www.techsource.com.my

©2005 Systems Sdn. Bhd.

9

Self-Organizing Maps
Similar to competitive neural networks, self-organizing maps
(SOMs) can learn the distribution of the input vectors. The
distinction between these two networks is that the SOM can also
learn the topology of the input vectors.

However, instead of updating the weight of the winning neuron i*,
all neurons within a certain neighborhood Ni*(d) of the winning
neuron are also updated using the Kohonen learning learnsom, as
follows:

iw(q) = iw(q – 1) + α(p(q) – iw(q – 1))

The neighborhood Ni*(d) contains the indices for all the neurons
that lie within a radius d of the winning neuron i*.

Ni(d) = {j, dij ≤ d}

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

10

Topologies & Distance Functions

Three different types of topology can be specified for the initial
location of the neurons:

1. Rectangular grid: gridtop
2. Hexagonal grid: hextop
3. Random grid: randtop

For example, to create a 5-by-7 hexagonal grid,

>> pos = hextop(5,7);
>> plotsom(pos);

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 47

www.techsource.com.my

©2005 Systems Sdn. Bhd.

11

Similarly, there are four different ways of calculating the distance
from a particular neuron to its neighbors:

1. Euclidean distance: dist
2. Box distance: boxdist
3. Link distance: linkdist
4. Manhattan distance: mandist

For example, with the 2-by-3 rectangular grid shown below,

>> d = boxdist(pos)
d =

0 1 1 1 2 2
1 0 1 1 2 2
1 1 0 1 1 1
1 1 1 0 1 1
2 2 1 1 0 1
2 2 1 1 1 0

1 2

3 4

5 6

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

12

The SOM Architecture

IW1,1

C

R

Output

R × 1

p

S1 × R

n1

S1 × 1

S1

a1

Input Self-Organizing Map Layer

|| ndist ||
S1 × 1

ni
1 = -|| iIW1,1 – p ||

a1 = compet(n1)

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 48

www.techsource.com.my

©2005 Systems Sdn. Bhd.

13

Creating and Training the SOM

Let’s load an input vector into MATLAB® workspace
>> load somdata
>> plot(P(1,:), P(2,:), ‘g.’, ‘markersize’, 20), hold on

Create a 2-by-3 SOM with following command, and superimpose
the initial weights onto the input space
>> net = newsom([0 2; 0 1], [2 3]);
>> plotsom(net.iw{1,1}, net.layers{1}.distances), hold off

The weights of the SOM are updated using the learnsom function,
where the winning neuron’s weights are updated proportional to α
and the weights of neurons in its neighbourhood are altered
proportional to ½ of α.

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

14

The training is divided into two phases:

1. Ordering phase: The neighborhood distance starts as the
maximum distance between two neurons, and decreases to
the tuning neighborhood distance. The learning rate starts at
the ordering-phase learning rate and decreases until it
reaches the tuning-phase learning rate. This phase typically
allows the SOM to learn the topology of the input space.

2. Tuning Phase: The neighborhood distance stays at the
tuning neighborhood distance (i.e., typically 1.0). The
learning rate continues to decrease from the tuning phase
learning rate, but very slowly. The small neighborhood and
slowly decreasing learning rate allows the SOM to learn the
distribution of the input space. The number of epochs for
this phase should be much larger than the number of steps
in the ordering phase.

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 49

www.techsource.com.my

©2005 Systems Sdn. Bhd.

The learning parameters for both phases of training are,

>> net.inputWeights{1,1}.learnParam
ans =

order_lr: 0.9000
order_steps: 1000

tune_lr: 0.0200
tune_nd: 1

Train the SOM for 1000 epochs with
>> net.trainParam.epochs = 1000;
>> net = train(net, P);

Superimpose the trained network structure onto the input space
>> plot(P(1,:), P(2,:), ‘g.’, ‘markersize’, 20), hold on
>> plotsom(net.iw{1,1}, net.layers{1}.distances), hold off

Try alter the size of the SOM and learning parameters and draw
conclusion on how it affects the result.

15
Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Exercise 2: Mapping of Input Space

16

In this exercise we will test whether the SOM can map out the topology and
distribution of an input space containing three clusters illustrated in the
figure below,

Types of Neural Network

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 50

www.techsource.com.my

©2005 Systems Sdn. Bhd.

17

Solution:
% Let’s start by creating the data for the input space illustrated previously

>> d1 = randn(3,100); % cluster center at (0, 0, 0)
>> d2 = randn(3, 100) + 3; % cluster center at (3, 3, 3)
>> d3 = randn(3,100), d3(1,:) = d3(1,:) + 9; % cluster center at (9, 0, 0)
>> d = [d1 d2 d3];

% Plot and show the generated clusters

>> plot3(d(1,:), d(2,:), d(3,:), ‘ko’), hold on, box on

% Try to build a 10-by-10 SOM and train it for 1000 epochs,
>> net = newsom(minmax(d), [10 10]);
>> net.trainParam.epochs = 1000;
>> net = train(net, d);

% Superimpose the trained SOM’s weights onto the input space,
>> gcf, plotsom(net.IW{1,1}, net.layers{1}.distances), hold off

% Simulate SOM to get indices of neurons closest to input vectors
>> A = sim(net, d), A = vec2ind(A);

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Types of Neural Network

Section Summary:
1. Perceptrons

Introduction
The perceptron architecture
Training of perceptrons
Application examples

2. Linear Networks
Introduction
Architecture of linear networks
The Widrow-Hoff learning algorithm
Application examples

3. Backpropagation Networks
Introduction
Architecture of backprogation network
The backpropagation algorithm
Training algorithms
Pre- and post-processing
Application examples

4. Self-Organizing Maps
Introduction
Competitive learning
Self-organizing maps
Application examples

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 51

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Case Study

Predicting the Future Time Series Data

The demand for electricity (in MW) varies according to seasonal changes and
weekday-weekend work cycle. How do we develop a neural-network based
Decision-Support System to forecast the next-day hourly demand?

0 5 10 15 20 25 30 35 40 45 50
4500

5000

5500

6000

6500

7000

7500

8000

8500

9000
Electricity Demand in Different Seasons

Time in half-hourly records

De
m

an
d

(M
W

)

Summer

Autumn

Winter

Spring

0 5 10 15 20 25 30 35 40 45 50
5000

5500

6000

6500

7000

7500

8000

8500

9000

9500
Electricity Demand: Weekdays Vs Weekends

Time in half-hourly records

D
em

an
d

(M
W

)

Weekday

Sat

Sun

Weekends

Note: NSW electricity demand data (1996 – 1998) courtesy of NEMMCO, Australia

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Case Study

Solution:

Step 1: Formulating Inputs and Outputs of Neural Network

By analysing the time-series data, a 3-input and 1-output neural network is
proposed to predict next-day hourly electricity demand,

Inputs: Output:
p1 = L(d,t) a1 = L(d+1, t)
p2 = L(d,t) - L(d-1,t)
p3 = Lm(d+1,t) - Lm(d,t)

Where,
L(d, t): Electricity demand for day, d, and hour, t
L(d+1, t): Electricity demand for next day, (d+1), and hour, t
L(d-1, t): Electricity demand for previous day, (d-1), and hour t
Lm(a, b) = ½ [L(a-k, b) + L(a-2k, b)]
k = 5 for Weekdays Model & k = 2 for Weekends Model

Statistics & Data Analysis using Neural
Network

Copyrighted 2005 TechSource Systems
Sdn Bhd 52

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Case Study

Step 2: Pre-process Time Series Data to Appropriate Format

The time-series data is in MS Excel format and was date- and time-tagged. We
need to preprocess the data according to following steps:

1. Read from the MS Excel file [histDataIp.m]

2. Divide the data into weekdays and weekends [divideDay.m]

3. Remove any outliers from the data [outlierRemove.m]

Step 3: Constructing Inputs and Output Data for Neural Network

Arrange the processed data in accordance to neural-network format:

1. Construct Input-Output pair [nextDayIp.m]

2. Normalizing the training data for faster learning [processIp.m]

Step 4: Training & Testing the Neural Network

Train the neural network using command-line or NNTOOL. When training is
completed, proceed to test the robustness of the network against “unseen”
data.

www.techsource.com.my

©2005 Systems Sdn. Bhd.

The EndThe End
Kindly return your Evaluation Form

Tel: 603 Tel: 603 –– 8076 1953 Fax: 603 8076 1953 Fax: 603 –– 8076 19548076 1954
Email: Email: info@techsource.com.myinfo@techsource.com.my Web: Web: www.techsource.com.mywww.techsource.com.my
TechTech--Support: Support: techsupport@techsource.com.mytechsupport@techsource.com.my

