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Neural Network Concepts
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Neural Network Concepts

Definition of Neural Network

“A neural network is an interconnected assembly of simple 
processing elements, units or nodes, whose functionality is 
loosely based on the animal neuron. The processing ability of 
the network is stored in the inter-unit connection strengths, or 
weights, obtained by a process of adaptation to, or learning
from, a set of training patterns.”

Inputs Outputs
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The Biological Perspective of Neural Networks

Neural Network Concepts
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Neural Network Applications:

Aerospace
Automotive
Banking
Credit Card Activity 
Checking
Defense
Electronics
Entertainment
Financial
Industrial

Insurance
Manufacturing
Medical
Oil & Gas
Robotics
Speech
Securities
Telecommunications
Transportation

Neural Network Concepts
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Neural Network Concepts

Components of Simple Neuron

•
•
•
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Components of Simple Neuron

a = f(w1p1+ w2p2 + w3p3 + … + wRpR + b)

Σ ƒ•
•
•

Summation
Transfer 
Functionw1
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Neural Network Concepts
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Neural Network Concepts

Σ n a
Inputs Output

p1

p2

w1

w2

1

If p1 = 2.5; p2 = 3; w1 = 0.5; w2 = -0.7; b = 0.3. Let’s assume the transfer 
function of the neuron is hardlimit, where,

0 for n < 0
a = hardlim(n) =

1 for n ≥ 0

∴ a = hardlim(n) = hardlim( w1p1 + w2p2 + b)
= hardlim( 0.5×2.5 + (-0.7)×3 + 0.3 )
= hardlim( -0.55)
= 0

b

Example:
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Neural Network Concepts

MATLAB® Representation of 
the Simple Neuron Model

W

b

ƒ

R

Input A Single-Neuron Layer Output

R × 1

p

1

1 × R

1 × 1

n
1 × 1

1

a
1 × 1

a = f(Wp + b)

p =    p1

p2
•
•
•
pR R × 1

Input 
Vector

Weight 
Vector

W = [w1 w2 • • • wR] 1 × R

R = number of input elements
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Neural Network Concepts

Single Layer of Neurons

IW1,1

b1

f1

R

Input Layer 1 with S Neurons Output

R × 1

p

1

S1 × R

S1 × 1

n1

S1 × 1

S1

a1

S1 × 1

a1 = f1(IW1,1p + b1)

R = number of input elements

Where,

• S1: Number of neurons 
in Layer 1

• IW1,1: Input Weight 
matrix for connection 
from Input to Layer 1

iw1,1
1,1  iw1,1

1,2 … iw1,1
1,R

iw1,1
2,1  iw1,1

2,2 … iw1,1
2,R

IW1,1 =

iw1,1
S,1  iw1,1

S,2 … iw1,1
S,R

...
...

...

S × R

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Neural Network Concepts

IW1,1

b1

f1
R × 1

p

1

n1

S1

LW2,1

b2

f2
LW3,2

b3

f3

1 1

Input Layer 1 Layer 2 Layer 3

S1 × R

S1 × 1

a1

S1 × 1
S1 × 1

S2 × 1
S2

n2

S2 × 1
S2 × S1

a2

S2 × 1 S3 × S2

S3 × 1

n3

S3 × 1

S3

a3 = y

Output

S3 × 1

a1 = f1(IW1,1p + b1) a2 = f2(LW2,1a1 + b2) a3 = f3(LW3,2a2 + b3)

∴ a3 = f3(LW3,2 f2(LW2,1 f1(IW1,1p + b1) + b2) + b3) = y

• S1, S2, S3: Number of neurons in Layer 1, Layer 2, Layer 3 respectively
• IW1,1: Input Weight matrix for connection from Input to Layer 1
• LW2,1: Layer Weight matrix for connection from Layer 1 to Layer 2
• LW3,2: Layer Weight matrix for connection from Layer 2 to Layer 3

Hidden Layers Output Layer

R

Multiple Layer of Neurons



Statistics & Data Analysis using Neural 
Network

Copyrighted 2005 TechSource Systems 
Sdn Bhd 7

www.techsource.com.my

©2005 Systems Sdn. Bhd.

Neural Network Concepts

Example:

Σ

Σ
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1
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1,1
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1,2

iw1,1
2,1

iw1,1
2,2

lw2,1
1,1

lw2,1
1,2

1

Inputs

Hidden Layer Output Layer

Neural network with 2 layers. 1st layer (hidden layer) consists of 2 neurons 
with tangent-sigmoid (tansig) transfer functions; 2nd layer (output layer) 
consists of 1 neuron with linear (purelin) transfer function. 

Output
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Neural Network Concepts

In MATLAB® abbreviated notation, the neural network is represented by the 
diagram below.

IW1,1

b1

2

2 × 1
p

1

2 × 2

2 × 1

n1

2 × 1

2

a1

2 × 1 LW2,1

b2

n2

1 × 1

1

a2 = y
1 × 1

1 × 2

1
1 × 1

IW1,1 = 
iw1,1

1,1 iw1,1
1,2

iw1,1
2,1 iw1,1

2,2

p =
p1

p2
b1 =

b1
1

b1
2

n1 =
n1

1

n1
2

a1 =
a1

1

a1
2

LW2,1 = lw2,1
1,1 lw2,1

1,2 b2 = b2
1

n2 = n2
1 a2 = a2

1 = y

∴ a2 = purelin(LW2,1 tansig(IW1,1p + b1) + b2) = y

tansig purelin
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Neural Network Concepts

tansig(n) = 2 / ((1 + e-2n) -1)

purelin(n) = n

IW1,1 = 
0.3 -0.7

-0.2 0.5
p = 1

2
b1 =

0.1
0.2 LW2,1 = 0.1 -0.2 b2 = 0.3

∴ a2 = purelin(LW2,1 tansig(IW1,1p + b1) + b2) = y

For, 

∴y = a2 = purelin(LW2,1 tansig(IW1,1p + b1) + b2)
= purelin([0.1 -0.2] × tansig([0.3 -0.7 ; -0.2 0.5] × [1 ; 2] + [0.1 ; 0.2]) + 0.3)
= purelin([0.1 -0.2] × tansig([-1 ; 1]) + 0.3)
= purelin(0.0715)
= 0.0715
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Neural Network Concepts

Section Summary:
1. Introduction

Definition of neural network
Biological perspective of neural network
Neural network applications

2. Simple neuron model
Components of simple neuron

3. MATLAB representation of neural network
Single neuron model
Neural network with single-layer of neurons
Neural network with multiple-layer of neurons
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Types of Neural Network

Section Outline:
1. Perceptrons

Introduction
The perceptron architecture
Training of perceptrons
Application examples

2. Linear Networks
Introduction
Architecture of linear networks
The Widrow-Hoff learning algorithm
Application examples

3. Backpropagation Networks
Introduction
Architecture of backprogation network
The backpropagation algorithm
Training algorithms
Pre- and post-processing
Application examples 

4. Self-Organizing Maps
Introduction
Competitive learning
Self-organizing maps
Application examples
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Perceptrons

Invented in 1957 by Frank Rosenblatt at Cornell Aeronautical 
Laboratory. 

The perceptron consists of a single-layer of neurons whose 
weights and biases could be trained to produce a correct 
target vector when presented with corresponding input vector.

The output from a single perceptron neuron can only be in one 
of the two states. If the weighted sum of its inputs exceeds a 
certain threshold, the neuron will fire by outputting 1; 
otherwise the neuron will output either 0 or -1, depending on 
the transfer function used.

The perceptron can only solve linearly separable problems.

Types of Neural Network
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If a straight line can be drawn to separate the input vectors 
into two categories, the input vectors are linearly separable, as 
illustrated in the diagram below. If need to identify four 
categories, we need to use two perceptron neurons.

Linearly Separable Problems

p1

p2

(a) Two categories of 
input vectors 

(b)   Four categories of 
input vectors 

p1

p2

Types of Neural Network
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The Perceptron Neuron

Σ•
•
•

Summation Hardlimitw1
w2
w3

wR

b

1

p1

p2

p3

pR

a

a = hardlim(w1p1+ w2p2 + w3p3 + … + wRpR + b)

Inputs Outputn

Types of Neural Network
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MATLAB® Representation of 
the Perceptron Neuron

W

b

R

Input A Single-Neuron Layer Output
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1 × R

1 × 1
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1 × 1

1

a
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a
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Transfer Function

0 for n < 0
a = hardlim(n) =

1 for n ≥ 0

Types of Neural Network
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The Perceptron Architecture
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•
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•
•
•

•
•
•

Input The Perceptron Layer Output

IW1,1

b1

R

Single Layer of S Neurons Output

R × 1

p

1

S1 × R

S1 × 1

n1

S1 × 1

S1

a1

S1 × 1

a1 = hardlim(IW1,1p + b1)

Input

Types of Neural Network
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Creating a Perceptron: 
Command-Line Approach

The example below illustrates how to create a two-input, single-ouput 
perceptron. The input values range from -2 to 2.

% Creating a perceptron
>> net = newp([-2 2; -2 2], 1);

% Checking properties and values of Input Weights
>> net.inputWeights{1,1}   % properties
>> net.IW{1,1}   % values

Σ

[-2:2]   p1

[-2:2]   p2

w1

w2

n

b
1

a
IW1,1

b1

2

2 × 1

p

1

1 × 2

1 × 1

n1

1 × 1

1

a1

1 × 1

Types of Neural Network
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Types of Neural Network

% Checking properties and values of bias
>> net.biases{1}  % properties
>> net.b{1}  % values

% Note that initial weights and biases are initialized to zeros using “initzero”
>> net.inputWeights{1,1}.initFcn
>> net.biases{1}.initFcn

% To compute the output of perceptron from input vectors [p1; p2], use the 
“sim” command
>> p = [ [2; 2] [1; -2] [-2; 2] [-1; 1] ] 
>> a = sim(net, p)
>> a = 

1 1  1  1
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The Perceptron Learning Rule

Perceptrons are trained on examples of desired behavior, which 
can be summarized by a set of input-output pairs

{p1, t1}, {p2, t2},…, {pQ, tQ}

The objective of training is to reduce the error e, which is the 
difference t – a between the perceptron output a, and the target 
vector t.

This is done by adjusting the weights (W) and biases (b) of the 
perceptron network according to following equations

Wnew = Wold + ∆W = Wold + epT

bnew = bold + ∆b = bold + e

Where e = t – a

Types of Neural Network
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Training of Perceptron

If the Perceptron Learning Rule is used repeatedly to adjust the
weights and biases according to the error e, the perceptron wil 
eventually find weight and bias values that solve the problem, 
given that the perceptron can solve it.

Each traverse through all the training vectors is called an epoch.

The process that carries out such a loop of calculation is called 
training.

Types of Neural Network
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10

We can train a Perceptron network to classify two groups of data, as 
illustrated below 

x1

x2

p1
p2

p3

p4

p5

p6

p7

p8

Group 0

Group 1

0.7
-2.5

2
-3.5

3
0.7
-1.2
-0.5
x2

11p8

00p7

10p6

0-1p5

1-1p4

1-1.5p3

0-2p2

0-3p1

Groupx1Data

Example:

Types of Neural Network
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11

Procedures:
% Load the data points into Workspace
>> load data

% Assign training inputs and targets
>> p = points; % inputs
>> t = group;  % targets

% Construct a two-input, single-output perceptron
>> net = newp(minmax(p), 1);

% Train the perceptron network with training inputs (p) and targets (t)
>> net = train(net, p, t)

% Simulate the perceptron network with same inputs again
>> a = sim(net, p)
>> a = 

0   0   1   1   0   1   0   1   % correct classification
>> t = 

0   0   1   1   0   1   0   1

Types of Neural Network
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12

% Let’s be more adventurous by querying the perceptron with inputs it 
never seen before

>> t1 = [-2; -3];
>> t2 = [0.5; 4];
>> a_t1 = sim(net, t1)
>> a_t1 =

0
>> a_t2 = sim(net, t2)
>> a_t2 = 

1

x1

x2

p1

p2

p3

p4

p5

p6

p7

p8

Group 0

Group 1

t1

t2

∴ The perceptron classifies t1 and t2 correctly.

Types of Neural Network
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Using “nntool” GUI
The “nntool” GUI can be used to create and train different types of neural 
network available under MATLAB® Neural Network Toolbox

The GUI can be invoked by typing at the command window,
>> nntool

13
Types of Neural Network
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Create a new perceptron network by clicking “New Network…”, a new 
window appears where network architecture can be defined. Click “Create”
to create the network.

First, define the training inputs by clicking “Import…”, select group from 
the list of variables. Assign a name to the inputs and indicate that this 
variable should be imported as inputs. 

Define the targets similarly.

Types of Neural Network
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Next, select the “Train…” tab and set Inputs to p and Targets to t. Click on 
“Train Network” to start the training.

Types of Neural Network
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The network completed training in 4 epochs, which is 4 complete passes 
through all training inputs.

Now, we can test the performance of the trained network by clicking 
“Simulate...”. Set the Inputs to p.

16
Types of Neural Network
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Exercise 1: Modeling Logical AND Function
The Boolean AND function has the following truth table:

111
001
010
000

X AND YYX

The problem is linearly-separable, try to build a one-
neuron perceptron network with following inputs and 
output:

111
001
010
000
ap2p1

1

p1

00

0

17

p2

Types of Neural Network



Statistics & Data Analysis using Neural 
Network

Copyrighted 2005 TechSource Systems 
Sdn Bhd 18

www.techsource.com.my

©2005 Systems Sdn. Bhd.

18

Solution:
Command-line approach is demonstrated herein. The “nntool” GUI can be used alternatively.

% Define at the MATLAB® command window, the training inputs and targets
>> p = [0 0 1 1; 0 1 0 1]; % training inputs, p = [p1; p2]
>> t = [0 0 0 1]; % targets

% Create the perceptron
>> net = newp([0 1; 0 1], 1);

% Train the perceptron with p and t
>> net = train(net, p, t);

% To test the performance, simulate the perceptron with p
>> a = sim(net, p)
>> a = 

0  0  0  1
>>  t =

0  0  0  1

Types of Neural Network
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Exercise 2: Pattern Classification 
Build a perceptron that can differentiate between two group of images:

Hint:

Use Boolean values 1’s and 0’s to 
represent the image. 

Example for image_1 is shown. 

∴ image_1 = [ 0 1 0
1 0 1
1 0 1
0 1 0]’;

Load the training vectors into 
workspace:

>> load train_images

Group 0 Group 1

img2

0

img1

1 0
1 0 1
1 0 1
0 1 0

img3 img4

Types of Neural Network
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Try testing the trained perceptron on following images:

timg1 timg2 timg3

>> load test_images

20
Types of Neural Network
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Solution:
Command-line approach is demonstrated herein. Tne “nntool” GUI can be used alternatively.

% Define at the MATLAB® command window, the training inputs and targets
>> load train_images
>> p = [img1 img2 img3 img4];
>> t = targets;

% Create the perceptron
>> net = newp(minmax(p), 1);

% Training the perceptron
>> net = train(net, p, t);

% Testing the performance of the trained perceptron
>> a = sim(net, p)

% Load the test images and ask the perceptron to classify it
>> load test_images
>> test1 = sim(net, timg1) % to do similarly for other test images

21
Types of Neural Network
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Linear Networks

Linear networks are similar to perceptron, but their transfer 
function is linear rather than hard-limiting.

Therefore, the output of a linear neuron is not limited to 0 or 1.

Similar to perceptron, linear network can only solve linearly 
separable problems. 

Common applications of linear networks are linear 
classification and adaptive filtering.

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

The Linear Neuron

Σ•
•
•

Summation Linearw1
w2
w3

wR

b

1

p1

p2

p3

pR

a

a = purelin(w1p1+ w2p2 + w3p3 + … + wRpR + b)

Inputs Outputn
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MATLAB® Representation of 
the Linear Neuron

a

0

+1

n

-1

Transfer Function

a = purelin(n) = n

W

b

R

Input A Single-Neuron Layer Output

R × 1

p

1

1 × R

1 × 1

n
1 × 1

1

a
1 × 1

a = purelin(Wp + b)
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Architecture of Linear Networks

IW1,1

b1

R

Output

R × 1

p

1

S1 × R

S1 × 1

n1

S1 × 1

S1

a1

S1 × 1

a1 = purelin(IW1,1p + b1)

Input Layer of S1 Linear NeuronsΣ

Σ

p1

p2

1

n1
1

n1
2

a1
1

a1
2

b1
1

b1
2

iw1,1
1,1

1

Σ n1
S1 a1

S1

b1
S1

1

iw1,1
S1,R

•
•
•

pR

•
•
•

•
•
•

Input Layer of Linear Neurons Output
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5

Creating a Linear Network: 
Command-Line Approach

The example below illustrates how to create a two-input, single-ouput linear 
network via command-line approach. The input values range from -2 to 2.

% Creating a linear network
>> net = newlin([-2 2; -2 2], 1);

% Checking properties and values of Input Weights
>> net.inputWeights{1,1}   % properties
>> net.IW{1,1}   % values

Σ

[-2:2]   p1

[-2:2]   p2

w1

w2

n

b
1

a
IW1,1

b1

2

2 × 1

p

1

1 × 2

1 × 1

n1

1 × 1

1

a1

1 × 1

Types of Neural Network
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6

% Checking properties and values of bias
>> net.biases{1}  % properties
>> net.b{1}  % values

% Note that initial weights and biases are initialized to zeros using “initzero”
>> net.inputWeights{1,1}.initFcn
>> net.biases{1}.initFcn

% To compute the output of linear network from input vectors [p1; p2], use 
the “sim” command
>> p = [ [2; 2] [1; -2] [-2; 2] [-1; 1] ] 
>> a = sim(net, p)
>> a = 

0   0   0   0

Types of Neural Network
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The Widrow-Hoff Learning Algorithm

Similar to perceptron, the Least Mean Square (LMS) algorithm, 
alternatively known as the Widrow-Hoff algorithm, is an example 
of supervised training based on a set of training examples.

{p1, t1}, {p2, t2}, …, {pQ, tQ}

The LMS algorithm adjusts the weights and biases of the linear 
networks to minimize the mean square error (MSE)

The LMS algorithm adjusts the weights and biases according to 
following equations

W(k + 1) = W(k) + 2αe(k)pT(k)

b(k + 1) = b(k) + 2αe(k)

( ) ( ) ( )( )22

1 1

1 1Q Q

k k
MSE e k t k a k

Q Q= =

= = −∑ ∑
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Linear Classification (train)

Linear networks can be trained to perform linear classification 
with the function train.

The train function applies each vector of a set of input vectors 
and calculates the network weight and bias increments due to 
each of the inputs according to the LMS (Widrow-Hoff) 
algorithm.

The network is then adjusted with the sum of all these 
corrections. 

A pass through all input vectors is called an epoch.
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Example:
Let’s re-visit Exercise 2: Pattern Classification of the Perceptrons. 
We can build a Linear Network to perform not only pattern classification but 
also association tasks.

Group 
0

Group 
1

img2

0

img1

1 0
1 0 1
1 0 1
0 1 0

img3

img4

Training Images Testing Images

timg1 timg2

timg3
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Solution:
Command-line approach is demonstrated herein. Tne “nntool” GUI can be used alternatively.

% Define at the MATLAB® command window, the training inputs and targets
>> load train_images
>> p = [img1 img2 img3 img4];
>> t = targets;

% Create the linear network
>> net = newlin(minmax(p), 1);

% Train the linear network
>> net.trainParam.goal = 10e-5; % training stops if goal achieved
>> net.trainParam.epochs = 500; % training stops if epochs reached
>> net = train(net, p, t); 

% Testing the performance of the trained linear network
>> a = sim(net, p)
>> a = 

-0.0136    0.9959    0.0137    1.0030
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% Comparing actual network output, a, with training targets, t:
>> a = 

-0.0136    0.9959    0.0137    1.0030
>> t = 

0             1             0             1

∴ The actual network output, a, closely resembles that of target, t. It is 
because the output from Linear Network is not straightly 0 or 1, the 
output can be a range of values.

% Now, test the Linear Network with 3 images not seen previously
>> load test_images
>> test1 = sim(net, timg1)
>> test1 = 

0.2271
>> test2 = sim(net, timg2)
>> test2 = 

0.9686
>> test3 = sim(net, timg3)

test3 = 
0.8331 
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How should we interpret the network outputs test1, test2 and test3? For that we 
need to define a Similarity Measure, S

S t test= −

Where t is the target-group (i.e. 0 or 1) and test is the network output when 
presented with test images. 

0.16690.8331timg3

0.03140.9686timg2

0.77290.2271timg1

wrt. Group 1wrt. Group 0test image

Similarity Measure, S

The smaller the S is, the more similar is a test image to a particular group. 

∴ timg1 belongs to Group 0 while 
timg2 and timg3 belong to Group 1. 

These results are similar to what we 
obtained previously using 
Perceptron. By using Linear 
Network we have the added 
advantage of knowing how similar 
is it a test image is to the target 
group it belonged.
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Exercise 1: Simple Character Recognition
Create a Linear Network that will differentiate between a Letter ‘U’ and Letter 
‘T’. The Letter ‘U’ and ‘T’ are represented by a 3×3 matrices:

T = [1 1 1
0 1 0
0 1 0]’

U = [1 0 1
1 0 1
1 1 1]’

Test the trained Linear Network with following test images:

U_odd = [1 1 1
1 0 1
1 1 1]’

T_odd = [1 1 1
0 1 0
0 1 1]’

>> load test_letters

>> load train_letters

Group 0 Group 1
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Solution:
Command-line approach is demonstrated herein. Tne “nntool” GUI can be used alternatively.

% Define at the MATLAB® command window, the training inputs and targets
>> load train_letters
>> p = [T U];
>> t = targets;

% Create the linear network
>> net = newlin(minmax(p), 1);

% Train the linear network
>> net.trainParam.goal = 10e-5; % training stops if goal achieved
>> net.trainParam.epochs = 500; % training stops if epochs reached
>> net = train(net, p, t); 

% Testing the performance of the trained linear network
>> a = sim(net, p)
>> a = 

0.0262   0.9796
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% Comparing actual network output, a, with training targets, t:
>> a = 

0.0262    0.9796
>> t = 

0             1

% Now, test the Linear Network with odd-shapes of T and U
>> load test_letters
>> test1 = sim(net, T_odd)
>> test1 = 

0.2066  % more similar to T
>> test2 = sim(net, U_odd)
>> test2 = 

0.8637  % more similar to U
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1

Backpropagation (BP) Networks

Backpropagation network was created by generalizing the 
Widrow-Hoff learning rule to multiple-layer networks and non-
linear differentiable transfer functions (TFs).

Backpropagation network with biases, a sigmoid TF layer, and a 
linear TF output layer is capable of approximating any function.

Weights and biases are updated using a variety of gradient 
descent algorithms. The gradient is determined by propagating 
the computation backwards from output layer to first hidden 
layer. 

If properly trained, the backpropagation network is able to 
generalize to produce reasonable outputs on inputs it has never 
“seen”, as long as the new inputs are similar to the training 
inputs.  
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2

Architecture of Feedforward BP Network

Σ

Σ

Σ

p1

p2

n1
1

a2
1

1
b1

1

iw1,1
1,1

iw1,1
2,1

iw1,1
S1,R

lw2,1
1,1

Inputs Outputs

pR Σ

Σ•••
•••

b1
2

b1
S1

1

1

1

1

b2
1

b2
2

n1
2

n1
S1

n2
1

n2
2 a2

2

lw2,1
2,1

lw2,1
2,S1

Hidden Layer Output Layer
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MATLAB® Representation of 
the Feedforward BP Network

IW1,1

b1

R

R × 1
p

1

S1 × R

S1 × 1

n1

S1 × 1

S1

a1

S1 × 1 LW2,1

b2

n2

2 × 1

2

a2 = y
2 × 1

2 × S1

1
2 × 1

∴ a2 = purelin(LW2,1 tansig(IW1,1p + b1) + b2) = y

tansig purelin
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4

Transfer Functions for BP Networks
a

0

+1

n

-1

a

0

+1

n

-1

a

0

+1

-1

n

Log-Sigmoid

Tangent-Sigmoid

Linear

logsig(n) = 1 / (1 + exp(-n))

tansig(n) = 2/(1+exp(-2*n))-1
purelin(n) = n
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The Backpropagation Algorithm 

The backpropagation algorithm is used to update the weights 
and biases of the neural networks. Full details of the algorithm 
is given in Appendix 1. 

The weights are updated according to following formulae:

5

, ,
,

j i j j i
j i

Ew x
w

α αδ∂
∆ = − = −

∂
, , ,j i j i j iw w w← + ∆

( ) ( )1k k k k ka a t aδ = − − −

( ) ,
( )

1h h h k k h
k Downstream h

a a wδ δ
∈

= − ∑

where,

For output neuron k,

For hidden neuron h, Please see 
Appendix 1 for 
full derivation of 
the algorithm
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Training of Backpropagation Networks

6

There are generally four steps in the training process:

1. Assemble the training data;
2. Create the network object;
3. Train the network;
4. Simulate the network response to new inputs.

The MATLAB® Neural Network Toolbox implements some of 
the most popular training algorithms, which encompass both 
original gradient-descent and faster training methods.
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Batch Gradient Descent Training

7

Batch Training: the weights and biases of the network are 
updated only after the entire training data has been applied to 
the network. 

Batch Gradient Descent (traingd):

• Original but the slowest;

• Weights and biases updated in the direction of the 
negative gradient (note: backprop. algorithm);

• Selected by setting trainFcn to traingd:

net = newff(minmax(p), [3 1], {‘tansig’, ‘purelin’}, ‘traingd’);
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Batch Gradient Descent with Momentum

Batch Gradient Descent with Momentum (traingdm):

• Faster convergence than traingd;

• Momentum allows the network to respond not only the 
local gradient, but also to recent trends in the error 
surface;

• Momentum allows the network to ignore small features in 
the error surface; without momentum a network may get 
stuck in a shallow local minimum.

• Selected by setting trainFcn to traingdm:

net = newff(minmax(p), [3 1], {‘tansig’, ‘purelin’}, ‘traingdm’);
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Faster Training

The MATLAB® Neural Network Toolbox also implements some 
of the faster training methods, in which the training can 
converge from ten to one hundred times faster than traingd
and traingdm.

These faster algorithms fall into two categories:

1. Heuristic techniques: developed from the analysis of the 
performance of the standard gradient descent algorithm, 
e.g. traingda, traingdx and trainrp.

2. Numerical optimization techniques: make use of the 
standard optimization techniques, e.g. conjugate 
gradient (traincgf, traincgb, traincgp, trainscg), quasi-
Newton (trainbfg, trainoss), and Levenberg-Marquardt 
(trainlm).

9
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Comparison of Training Algorithms

GD with adaptive α and with 
momentumtraingdx

One Step Secant algorithmtrainoss
Quasi-Newton Algorithms with 
fast convergence

BFGS algorithmtrainbfg

Improve generalization capability

Fastest training. Memory 
reduction features

Conjugate Gradient Algorithms 
with fast convergence

Fast convergence

Faster than traingd, but can use 
for batch mode only.

Faster than traingd
Original but slowest

Comments

Levenberg-Marquardt trainlm

Bayesian regularizationtrainbr

Scaled Conjugate Gradienttrainscg
Powell-Beale Restartstraincgb

Polak-Ribiére Updatetraincgp

Fletcher-Reeves Updatetraincgf
Resilient Backpropagationtrainrp

GD with adaptive αtraingda
GD with momentumtraingdm
Gradient Descent (GD)traingd

Training Algorithms
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Pre- and Post-Processing Features

Linear regression between network outputs and targets. Use to 
determine adequacy of network fit.postreg

Description

Preprocess new inputs to networks that were trained with data 
transformed with prepca.trapca

Principal component analysis. Reduces dimension of input vectorprepca

Preprocess new inputs to networks that were trained with data 
normalized with prestd.trastd

Inverse of prestd. Convert data back into original range of values.poststd

Normalize data to have zero mean and unity standard deviationprestd

Preprocess new inputs to networks that were trained with data 
normalized with premnmx.tramnmx

Inverse of premnmx. Convert data back into original range of values.postmnmx
Normalize data to fall into range [-1 1].premnmx

Function
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Example: Modeling Logical XOR Function
The XOR Problem is highly non-linear, thereby cannot be solved using 
Perceptrons or Linear Networks. In this example, we will construct a simple 
backpropagation network to solve this problem. 

011
101
110
000

X XOR YYX

0

1

1

0

X

Y

111
001
010
000
ap2p1
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Solution:
Command-line approach is demonstrated herein. Tne “nntool” GUI can be used alternatively.

% Define at the MATLAB® command window, the training inputs and targets
>> p = [0 0 1 1; 0 1 0 1];
>> t = [0 0 0 1];

% Create the backpropagation network
>> net = newff(minmax(p), [4 1], {‘logsig’, ‘logsig’}, ‘traingdx’);

% Train the backpropagation network
>> net.trainParam.epochs = 500; % training stops if epochs reached
>> net.trainParam.show = 1; % plot the performance function at every epoch
>> net = train(net, p, t); 

% Testing the performance of the trained backpropagation network
>> a = sim(net, p)
>> a = 

0.0002  0.0011  0.0001  0.9985
>>  t =

0           0           0           1 

13
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Improving Generalization with Early Stopping

The generalization capability can be improved with the early 
stopping feature available with the Neural Network toolbox.

In this technique the available data is divided into three 
subsets:

1. Training set
2. Validation set
3. Testing set

The early stopping feature can be invoked when using the 
train command:

[net, tr] = train(net, p, t, [ ], [ ], VV, TV)

VV: Validation set structure; TV: Test set structure.
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Example: Function Approximation with Early Stopping

% Define at the MATLAB® command window, the training inputs and targets
>> p = [-1: 0.05: 1];
>> t = sin(2*pi*p) + 0.1*randn(size(p));

% Construct Validation set
>> val.P = [-0.975: 0.05: 0.975]; % validation set must be in structure form
>> val.T = sin(2*pi*val.P) + 0.1*randn(size(val.P));

% Construct Test set (optional)
>> test.P = [-1.025: 0.05: 1.025]; % validation set must be in structure form
>> test.T = sin(2*pi*test.P) + 0.1*randn(size(test.P));

% Plot and compare three data sets
>> plot(p, t), hold on, plot(val.P, val.T,‘r:*’), hold on, plot(test.P, test.T, ‘k:^’); 
>> legend(‘train’, ‘validate’, ‘test’);

% Create a 1-20-1 backpropagation network with ‘trainlm’ algorithm
>> net = newff(minmax(p), [20 1], {‘tansig’, ‘purelin’}, ‘trainlm’);
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>> net.trainParam.show = 1;
>> net.trainParam.epochs = 300;

% First, train the network without early stopping
>> net = init(net); % initialize the network
>> [net, tr] = train(net, p, t);
>> net1 = net; % network without early stopping

% Then, train the network with early stopping with both Validation & Test sets
>> net = init(net);
>> [net, tr] = train(net, p, t, [], [], val, test);
>> net2 = net; % network with early stopping

% Test the modeling performance of net1 & net2 on Test sets
>> a1 = sim(net1, test.P); % simulate the response of net1
>> a2 = sim(net2, test.P); % simulate the response of net2
>> figure, plot(test.P, test.T), xlim([-1.03 1.03]), hold on
>> plot(test.P, a1, ‘r’), hold on, plot(test.P, a2, ‘k’);
>> legend(‘Target’, ‘Without Early Stopping’, ‘With Early Stopping’); 
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∴Network with early stopping can better fit the Test data set with 
less discrepancies, therefore the early stopping feature can be 
used to prevent overfitting of network towards the training data.
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Exercise 1: Time-Series Prediction 
Create a Neural Network that can predict the next-day 24-hour time-series 
based on current-day 24-hour time-series. 

dd-1 d+1 d+2

current day next day

Types of Neural Network

www.techsource.com.my

©2005 Systems Sdn. Bhd.

19

The Neural Network structure is as follow:

Backprop.

Network

data(d, t=1)
data(d, t=2)
data(d, t=3)
data(d, t=4)

data(d, t=21)
data(d, t=22)
data(d, t=23)
data(d, t=24)

Inputs

(Current 
Day)

data(d+1, t=1)
data(d+1, t=2)
data(d+1, t=3)
data(d+1, t=4)

data(d+1, t=21)
data(d+1, t=22)
data(d+1, t=23)
data(d+1, t=24)

Output

(Next 
Day)
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Data details:

Load timeseries.mat into MATLAB® workspace.

Training Data (1st to 37th days): TrainIp (inputs), TrainTgt (targets)

Testing Data (38th to 40th days): TestIp (query inputs), TestTgt (actual values)

Network details:

Architecture: 24-48-24 network, with tansig TF and purelin TF in hidden and 
output layer respectively.

Training: trainlm algorithm with 7 epochs and plot the performance function 
every 1 epoch.

Hint: use pre- and post-processing functions premnmx, tramnmx, postmnmx to 
have more efficient training. 
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Solution:
% Load the Time Series data into MATLAB® Workspace
>> load timeseries

% Prepare the data for the network training
>> [PN, minp, maxp, TN, mint, maxt] = premnmx(TrainIp, TrainTgt);

% Create the backpropagation network
>> net = newff(minmax(PN), [48 24], {‘tansig’, ‘purelin’}, ‘trainlm’);
>> net.trainParam.epochs = 7;
>> net.trainParam.show = 1;

% Training the neural network
>> [net, tr] = train(net, PN, TN);

% Prepare the data for testing the network (predicting 38th to 40th days) 
>> PN_Test = tramnmx(TestIp,minp,maxp);

% Testing the neural network
>> TN_Test = sim(net, PN_Test);
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% Convert the testing output into prediction values for comparison purpose 
>> [queryInputs predictOutputs] =  postmnmx(PN_Test, minp, maxp, …
TN_Test, mint, maxt);

% Plot and compare the predicted and actual time series
>> predictedData = reshape(predictOutputs, 1, 72);
>> actualData = reshape(TestTgt, 1, 72);
>> plot(actualData, ‘-*’), hold on
>> plot(predictOutputs, ‘r:’);
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Homework: Try to subdivide the training data [TrainIp TrainTgt] into Training 
& Validation Sets to accertain whether the use of early stopping would 
improve the prediction accuracy.
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Exercise 2: Character Recognition 

Create a Neural Network that can recognize 26 letters 
of the alphabet.  An imaging system that digitizes 
each letter centered in the system field of vision is 
available. The result is each letter represented as a 7 
by 5 grid of boolean values. For example, here are the 
Letters A, G and W:

A G
W P

Q Z

A
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For each alphabetical letter, create a 35-by-1 input vector containing 
boolean values of 1’s and 0’s.   Example for Letter A:

0 0 1 0 0

0 1 0 1 0

0 1 0 1 0
1 0 0 0 1

1 1 1 1 1
1 0 0 0 1

1 0 0 0 1

Letter A = [0 0 1 0 0 …
0 1 0 1 0 …
0 1 0 1 0 …
1 0 0 0 1 …
1 1 1 1 1 …
1 0 0 0 1 …
1 0 0 0 1]’;

Corresponding Output is a 26-by-1 vector, indicating a 1 (i.e. TRUE) at 
the correct alphabetical sequence. Example for Target A:

Target A = [1 0 0 0 0 …
0 0 0 0 0 …
0 0 0 0 0 …
0 0 0 0 0 …
0 0 0 0 0 …
0]’;

25
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The Neural Network structure is as follow:

Neural

Network

0
0
1
0

0
0
0
1

1
1
1
1

1
1
1
0

1
1
1
0

0
1
1
1

1
0
0

0
0

0
1
0

0
0

0
0

0
0
1

A B C

Inputs

(Alphabets)

Outputs

(Targets)
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Data details:

Load training inputs and targets into workspace by typing 

[alphabets, targets] = prprob;

Network details:

Architecture: 35-10-26 network, with logsig TFs in hidden and output layers.

Training: traingdx algorithm with 500 epochs and plot the performance 
function every 1 epoch. Performance goal is 0.001.

27
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Solution:
% Load the training data into MATLAB® Workspace
>> [alphabets, targets] = prprob;

% Create the backpropagation network
>> net = newff(minmax(alphabets), [10 26], {‘logsig’, ‘logsig’}, ‘traingdx’);
>> net.trainParam.epochs = 500;
>> net.trainParam.show = 1;
>> net.trainParam.goal = 0.001;

% Training the neural network
>> [net, tr] = train(net, alphabets, targets);

% First, we create a normal ‘J’ to test the network performance
>> J = alphabets(:,10);
>> figure, plotchar(J);
>> output = sim(net, J);
>> output = compet(output) % change the largest values to 1, the rest 0s
>> answer = find(compet(output) == 1); % find the index (out of 26) of network 
output
>> figure, plotchar(alphabets(:, answer));
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% Next, we create a noisy ‘J’ to test the network can still identify it correctly…
>> noisyJ = alphabets(:,10)+randn(35,1)*0.2;
>> figure; plotchar(noisyJ);
>> output2 = sim(network1, noisyJ);
>> output2 = compet(output2);
>> answer2 = find(compet(output2) == 1);
>> figure; plotchar(alphabets(:,answer2));
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Self-Organizing Maps

Self-organizing in networks is one of the most fascinating 
topics in the neural network field. Such networks can learn to 
detect regularities and correlations in their input and adapt their 
future responses to that input accordingly. 

The neurons of competitive networks learn to recognize groups 
of similar input vectors. Self-organizing maps learn to recognize 
groups of similar input vectors in such a way that neurons 
physically near each other in the neuron layer respond to 
similar input vectors. 
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2

Competitive Learning

IW1,1

b1

C

R

Output

R × 1

p

1

S1 × R

S1 × 1

n1

S1 × 1

S1

a1

S1 × 1

Input Competitive Layer

|| ndist || S1 × 1
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Learning Algorithms for Competitive Network

The weights of the winning neuron (represented by a row of the 
input weight matrix) are adjusted with the Kohonen learning rule 
(learnk).

Supposed that the ith neuron wins, the elements of the ith row of 
the input weight matrix are adjusted according to following 
formula:

iIW1,1(q) =  iIW1,1(q-1) + α(p(q) – iIW1,1(q-1))

One of the limitations of the competitive networks is that some 
neurons may never wins because their weights are far from any 
input vectors. 

The bias learning rule (learncon) is used to allow every neuron in 
the network learning from the input vectors. 
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Example: Classification using Competitive Network

p(1)

p(2)

We can use a competitive network to 
classify input vectors without any 
learning targets.

Let’s say if we create four two-element 
input vectors, with two very close to (0 
0) and others close to (1 1). 

p = [0.1  0.8  0.1  0.9

0.2  0.9  0.1  0.8];

Let’s see whether the competitive 
network is able to identify the 
classification structure…
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% Define at the MATLAB® command window, the four two-element vectors
>> p = [0.1 0.8 0.1 0.9; 0.2 0.9 0.1 0.8];

% Create a two-neuron competitive network
>> net = newc([0 1; 0 1], 2);

% The weights are initialized to the center of input ranges with ‘midpoint’ fcn
>>net.IW{1,1}
ans = 

0.5    0.5
0.5    0.5

% The biases are computed by ‘initcon’ fcn, which gives
>> net.b{1}
ans = 

5.4366
5.4366

% Let’s train the competitive network for 500 epochs
>> net.trainParam.epochs = 500;
>> net = train(net, p);
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% Simulate the network with input vectors again
>> a  = sim(net, p)
>> ac = vec2ind(a)
>> ac = 

2     1     2     1

∴The network is able to classfy the input vectors into two classess, those 
who close to (1,1), class 1 and those close to origin (0,0), class 2. If we look 
at the adjusted weights,

>> net.IW{1,1}
ans = 

0.8500     0.8500
0.1000     0.1501

∴Note that the first-row weight vector (associated with 1st neuron) is near to 
input vectors close to (1,1), which the second-row weight vector (associated 
with 2nd neuron) is near to input vectors close to (0,0). 
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Exercise 1: Classification of Input Vectors:
Graphical Example

First, generate the input vectors by using the built-in nngenc function:

>> X = [0 1; 0 1]; % Cluster centers to be in these bounds
>> clusters = 8; % Number of clusters
>> points = 10; % Number of points in each cluster
>> std_dev = 0.05; % Standard deviation of each cluster
>> P = nngenc(X,clusters,points,std_dev);  % Number of clusters

Plot and show the generated clusters

>> plot(P(1,:),P(2,:),'+r');
>> title('Input Vectors');
>> xlabel('p(1)');
>> ylabel('p(2)');

Try to build a competitive network with 8 neurons and train for 1000 
epochs. Superimpose the trained network weights onto the same figure. 
Try to experiement with the number of neurons and conclude on the 
accuracy of the classification.
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Solution:
% Create and train the competitive network
>> net = newc([0 1; 0 1], 8, 0.1);  % Learning rate is set to 0.1
>> net.trainParam.epochs = 1000;
>> net = train(net, P);

% Plot and compare the input vectors and cluster centres determined by the 
competitive network
>> w = net.IW{1,1};
>> figure, plot(P(1,:),P(2,:),‘+r’);
>> hold on, plot(w(:,1), w(:,2), ‘ob’);

% Simulate the trained network to new inputs
>> t1 = [0.1; 0.1], t2 = [0.35; 0.4], t3 = [0.8; 0.2];
>> a1 = sim(net, [t1 t2 t3]);
>> ac1 = vec2ind(a1);
ac1 = 

1     5     6

Homework: Try altering the number of neurons in the competitive layer and 
observe how it affects the cluster centres.
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Self-Organizing Maps
Similar to competitive neural networks, self-organizing maps 
(SOMs) can learn the distribution of the input vectors. The 
distinction between these two networks is that the SOM can also 
learn the topology of the input vectors.

However, instead of updating the weight of the winning neuron i*, 
all neurons within a certain neighborhood Ni*(d) of the winning 
neuron are also updated using the Kohonen learning learnsom, as 
follows:

iw(q) =  iw(q – 1) + α(p(q) – iw(q – 1))

The neighborhood Ni*(d) contains the indices for all the neurons 
that lie within a radius d of the winning neuron i*.

Ni(d) = {j, dij ≤ d}
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Topologies & Distance Functions

Three different types of topology can be specified for the initial 
location of the neurons:

1. Rectangular grid: gridtop
2. Hexagonal grid: hextop
3. Random grid: randtop

For example, to create a 5-by-7 hexagonal grid,

>> pos = hextop(5,7);
>> plotsom(pos);
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Similarly, there are four different ways of calculating the distance 
from a particular neuron to its neighbors:

1. Euclidean distance: dist
2. Box distance: boxdist
3. Link distance: linkdist
4. Manhattan distance: mandist

For example, with the 2-by-3 rectangular grid shown below, 

>> d = boxdist(pos)
d = 

0     1     1     1     2     2
1     0     1     1     2     2
1     1     0     1     1     1
1     1     1     0     1     1
2     2     1     1     0     1
2     2     1     1     1     0

1 2

3 4

5 6
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The SOM Architecture

IW1,1

C

R

Output

R × 1

p

S1 × R

n1

S1 × 1

S1

a1

Input Self-Organizing Map Layer

|| ndist ||
S1 × 1

ni
1 = -|| iIW1,1 – p ||

a1 = compet(n1)
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Creating and Training the SOM

Let’s load an input vector into MATLAB® workspace
>> load somdata
>> plot(P(1,:), P(2,:), ‘g.’, ‘markersize’, 20), hold on

Create a 2-by-3 SOM with following command, and superimpose 
the initial weights onto the input space
>> net = newsom([0 2; 0 1], [2 3]);
>> plotsom(net.iw{1,1}, net.layers{1}.distances), hold off 

The weights of the SOM are updated using the learnsom function, 
where the winning neuron’s weights are updated proportional to α
and the weights of neurons in its neighbourhood are altered 
proportional to ½ of α.
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The training is divided into two phases:

1. Ordering phase: The neighborhood distance starts as the 
maximum distance between two neurons, and decreases to 
the tuning neighborhood distance. The learning rate starts at 
the ordering-phase learning rate and decreases until it 
reaches the tuning-phase learning rate. This phase typically 
allows the SOM to learn the topology of the input space.

2. Tuning Phase: The neighborhood distance stays at the 
tuning neighborhood distance (i.e., typically 1.0). The 
learning rate continues to decrease from the tuning phase 
learning rate, but very slowly. The small neighborhood and 
slowly decreasing learning rate allows the SOM to learn the 
distribution of the input space. The number of epochs for 
this phase should be much larger than the number of steps 
in the ordering phase.
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The learning parameters for both phases of training are,

>> net.inputWeights{1,1}.learnParam
ans = 

order_lr: 0.9000
order_steps: 1000

tune_lr: 0.0200
tune_nd: 1

Train the SOM for 1000 epochs with
>> net.trainParam.epochs = 1000;
>> net = train(net, P);

Superimpose the trained network structure onto the input space
>> plot(P(1,:), P(2,:), ‘g.’, ‘markersize’, 20), hold on
>> plotsom(net.iw{1,1}, net.layers{1}.distances), hold off

Try alter the size of the SOM and learning parameters and draw 
conclusion on how it affects the result.

15
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Exercise 2: Mapping of Input Space

16

In this exercise we will test whether the SOM can map out the topology and 
distribution of an input space containing three clusters illustrated in the 
figure below,
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Solution:
% Let’s start by creating the data for the input space illustrated previously

>> d1 = randn(3,100); % cluster center at (0, 0, 0)
>> d2 = randn(3, 100) + 3; % cluster center at (3, 3, 3)
>> d3 = randn(3,100), d3(1,:) = d3(1,:) +  9; % cluster center at (9, 0, 0)
>> d = [d1 d2 d3];

% Plot and show the generated clusters

>> plot3(d(1,:), d(2,:), d(3,:), ‘ko’), hold on, box on

% Try to build a 10-by-10 SOM and train it for 1000 epochs,
>> net = newsom(minmax(d), [10 10]);
>> net.trainParam.epochs = 1000;
>> net = train(net, d);

% Superimpose the trained SOM’s weights onto the input space,
>> gcf, plotsom(net.IW{1,1}, net.layers{1}.distances), hold off

% Simulate SOM to get indices of neurons closest to input vectors
>> A = sim(net, d), A = vec2ind(A); 
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Case Study

Predicting the Future Time Series Data

The demand for electricity (in MW) varies according to seasonal changes and 
weekday-weekend work cycle. How do we develop a neural-network based 
Decision-Support System to forecast the next-day hourly demand?
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Note: NSW electricity demand data (1996 – 1998) courtesy of NEMMCO, Australia
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Case Study

Solution:

Step 1: Formulating Inputs and Outputs of Neural Network 

By analysing the time-series data, a 3-input and 1-output neural network is 
proposed to predict next-day hourly electricity demand,

Inputs:                                         Output:
p1 = L(d,t)                                    a1 = L(d+1, t)
p2 = L(d,t) - L(d-1,t)
p3 = Lm(d+1,t) - Lm(d,t)

Where,
L(d, t): Electricity demand for day, d, and hour, t
L(d+1, t): Electricity demand for next day, (d+1), and hour, t 
L(d-1, t): Electricity demand for previous day, (d-1), and hour t
Lm(a, b) = ½ [ L(a-k, b) + L(a-2k, b)]
k = 5 for Weekdays Model & k = 2 for Weekends Model
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Case Study

Step 2: Pre-process Time Series Data to Appropriate Format

The time-series data is in MS Excel format and was date- and time-tagged. We 
need to preprocess the data according to following steps:

1. Read from the MS Excel file [histDataIp.m]

2. Divide the data into weekdays and weekends [divideDay.m]

3. Remove any outliers from the data [outlierRemove.m]

Step 3: Constructing Inputs and Output Data for Neural Network 

Arrange the processed data in accordance to neural-network format:

1. Construct Input-Output pair [nextDayIp.m]

2. Normalizing the training data for faster learning [processIp.m]

Step 4: Training & Testing the Neural Network

Train the neural network using command-line or NNTOOL. When training is 
completed, proceed to test the robustness of the network against “unseen”
data.
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